Differential Inhibition of the Rejoining of X-ray-induced DMA Strand Breaks in Normal and Transformed Human Fibroblasts Treated with 1,3-Bis(2-chloroethyl)-1-nitrosourea in V/fro1

نویسندگان

  • Leonard C. Erickson
  • Kurt W. Kohn
چکیده

The effects of 1,3-bis(2-chloroethyl)-1-nitrosourea on the rejoining of X-ray-induced DNA strand breaks were examined in normal human fibroblasts (WI-38) and a simian virus 40-transformed derivative (VA-13) with the use of alkaline sucrose sedimentation. 1,3-Bis(2-chloroethyl)-1nitrosourea was capable of partially inhibiting repair of Xray-produced DNA strand breaks in both cell types when the drug was added to the culture medium immediately after X-irradiation. However, when 1.3-bis(2-chloroethyl)1-nitrosourea exposure preceded X-ray by 1 hr, DNA repair was inhibited to a much greater extent than it was when 1,3-bis(2-chloroethyl)-1-nitrosourea followed X-ray. The inhibition of DNA repair by 1,3-bis(2-chloroethyl)-1nitrosourea appeared to be complete in the transformed VA-13 cells, while only partial inhibition of repair was observed in the normal WI-38 cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential inhibition of the rejoining of X-ray-induced DNA strand breaks in normal and transformed human fibroblasts treated with 1,3-bis(2-chloroethyl)-1-nitrosourea in vitro.

The effects of 1,3-bis(2-chloroethyl)-1-nitrosourea on the rejoining of X-ray-induced DNA strand breaks were examined in normal human fibroblasts (WI-38) and a simian virus 40-transformed derivative (VA-13) with the use of alkaline sucrose sedimentation. 1,3-Bis(2-chloroethyl)-1-nitrosourea was capable of partially inhibiting repair of X-ray-produced DNA strand breaks in both cell types when th...

متن کامل

Inhibition of the ligase step of excision repair by 2-chloroethyl isocyanate, a decomposition product of 1,3-bis(2-chloroethyl)-1-nitrosourea.

The compound 2-chloroethyl isocyanate, a decomposi tion product of 1,3-bis(2-chloroethyl)-1-nitrosourea, was studied for its effects on excision repair of DNA in normal human fibroblasts exposed to ultraviolet (UV) radiation. For examination of the initial step in repair (UV endonuclease), the frequency of UV-induced strand breaks was analyzed by alkaline elution. Repair polymerase activity was...

متن کامل

Effects of Carbamoylation on Cell Survival and DMA Repair in Normal Human Embryo Cells (IMR-90) Treated with Various 1-(2-Chloroethyl)-1-nitrosoureas1

The possibility was examined that the carbamoylating activity of some chloroethylnitrosoureas could interfere with the activity of normal human cells to survive treatment with these drugs; 1-(2-chloroethyl)-3-(frans-4-hydroxycyclohexyl)-1 -nitrosourea, which has strong carbamoylating activity, inhibited the rejoining of drug or X-ray-induced DMA strand breaks in IMR-90 cells, whereas the noncar...

متن کامل

Inhibition of the Ligase Step of Excision Repair by 2-Chloroethyl Isocyanate, a Decomposition Product of 1,3-Bis(2-chloroethyl)-1- nitrosourea1

The compound 2-chloroethyl isocyanate, a decomposi tion product of 1,3-bis(2-chloroethyl)-1-nitrosourea, was studied for its effects on excision repair of DNA in normal human fibroblasts exposed to ultraviolet (UV) radiation. For examination of the initial step in repair (UV endonuclease), the frequency of UV-induced strand breaks was analyzed by alkaline elution. Repair polymerase activity was...

متن کامل

Inhibition of DNA repair by the 1,3-bis(2-chloroethyl)-1-nitrosourea breakdown product, 2-chloroethyl isocyanate.

The rate of rejoining of DNA strand breaks in L1210 cells exposed to X-irradiation has been studied using a recently developed technique for estimating DNA chain length: alkaline elution of prelabeled DNA through membrane fil ters. A marked inhibition of repair of single-strand breaks, has been produced by 2-chloroethyl isocyanate, a break down product in the decomposition of the antitumor agen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006